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AbstmL The model of plastic phenomena in glasses is developed. St~ctural defecIs 
mnnected with the molecular states with a double-well potential are introduced. On the 
basis of this mncept it turns out to be possible to explain the characteristic features of 
the deformation process The value of the limit of proportionalily, yielding limit and 
angle of pmpagation of shear bands are estimated for a twodimensional glass. The 
recults obtained are compared with the experimental dam wailable and considerable 
agreement is observed. 

1. Introduction 

It is well hown that the theoretical description of the plastic deformation of crystals 
deals with the concept of structural defects. It is possible to define the ‘ground state 
of equilibrium’ of a crystal as associated with an ideally ordered lattice. The other 
possible states of equilibrium are connected with the various local violations of this 
order and may be identilied with the structural defects, e.g. dislocations, wcancies 
and disclinations. ’RI investigate the behaviour of dislocational loops (in the three- 
dimensional (3D) case) under an extemal load we obtain quite a reliable model of 
plastic phenomena in crystals [l]. 

Glasses can also demonstrate plastic behaviour. On the macroscopic level the 
characteristic features of plasticity in glasses are quite similar to those in crystals. In 
particular, it is possible to observe the formation of shear bands and plastic flow of 
glass under a constant external load. However, it is difficult to define structural defects 
in a disordered structure; the random network of chemical bonds or the random 
packing of spheres (which are the common molecular models for glasses) both may 
possess many metastable states of equilibrium, which is very far from an ordered 
crystalline structure. There is no opportunity to distinguish one of these metastable 
states as a ‘ground state’ without defects. So, we should consider all possible structures 
of glasses as containing defects. Attempts to construct the appropriate theory on 
the basis of the generalization of the dislocation concept for glasses [2] were not 
suuressful. 

The theory of topological defects in random networks was proposed by Rivier 
and Duffy [3,4]. The defect structures which they considered are in fact odd-number 
ring chains which either end on the surface of the glass or form a closed loop. This 
approach is very powerful and useful for different problems concerning the behaviour 
of glasses but has not yet been applied for the description of plastic phenomena. 

Nevertheless as a result of some computer and physical experiments it was 
established that the concept of structural defects may be useful to explain plastic 

0953-8984/93/111633+IOSM.S0 @ 1993 IOP Publishing Ud 1633 



1634 

phenomena in glasses. In the experiments of Argon and Kuo [5] the behaviour of 
the bubble model of a random-packed structure under a shear load was investigated. 
It was noticed that shear deformation was localized in 'small rings' of bubbles and 
proceeded without a considerable change in the free volume in these rings. Another 
experiment [6] was undertaken to study the behaviour of a plane system of ellipses 
interacting with each other only at the points of mechanical contact with forces of 
normal reaction and tangential friction. It was found that the plastic flow in such a 
system was accompanied by the formation of shear bands which were in fact lines of 
particles having an abnormally small number of contacts with their neighbours. The 
regions of local deformation in [5] and the regions with a small number of contacts 
in [6] may be regarded as similar to defects in a disordered system. 

Other evidence that structural defects are important for the description of 
properties of glasses is provided by various experimental and theoretical explorations 
of anomalous low-temperature properties, such as heat capacity and heat conductivity 
[7,8]. The existing phenomenological models introduce the concept of defects present 
in glasses, referred to as 'softons' [T or 'states with double-well potential (SDWPs).. 
The local motions connected with the& defects and the scattering of long-wave 
phonons on these defects are responsible for the anomalies observed. 

The main idea of the present paper is that the structural defects discovered 
by simulation and introduced into phenomenological theories of low-temperature 
properties are the same and are responsible for both the thermal and the mechanical 
properties of glasses. From the viewpoint of microstructure these defects, in our 
opinion, may be associated with dischation loops of minimal possible size. Large 
loops are regarded as 'diluted' in the elastic continuum and affect the average elastic 
properties only. They can hardly rake part in plastic events because of their large size 
and the huge energy needed to create such a defect in material. 

In the present paper for simplicity we deal with the two-dimensional (XI) model 
of glass. The model of defects in this case is constructed in section 2 The process 
of plastic deformation is considered in section 3. Then the results obtained are 
discussed in connection with the experimental data. Some other possibilities of the 
theory developed are also demonstrated. 
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2. Theory of a single defect 

In the onedimensional case the system with a doublewell potential (DWP) may be 
obtained for the system given in figure 1. The interaction of particles is described by 
the usual Lennard-Jones potential: 

U ( r )  = V[(o/r) '* - ( ~ / r ) ~ ] .  

It is simple to demonstrate that for 

we obtain that atom 2 is in the DW. 
In order to develop the molecular model of structural defects in a XI glass we 

consider the system presented in figure 2 Atom 2 is replaced in direction 1-2 to 
create a DWP for atom 1. In another direction the potential for atom 1 remains of 
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a single-well nature. The presence of atoms in the first sphere of coordination may 
result in asymmetry of the DWP. If we regard the third sphere of coordination as fixed, 
it is possible to obtain a stable configuration. Such a model of a defect with a DWP 
is applicable for describing the thermal properties of glasses. The low coordination 
number of atom 1 corresponds to the small number of contacts in [6]. 'Ib describe 
the mechanical properties, however, we need the quantitative description of a defect. 

The displacements of atoms in the second sphere of coordination are small enough 
to use the theory of elasticity to describe the long-range field of displacements, caused 
by the defect. In order to define the rate of decrease in displacements at long 
distances from the core of the defect, we recall that the appearance of the defect 
introduced leads to local changes in the structure of the disordered system only (the 
appearance of a dislocation in the crystal, on the contrary, needs an additional atomic 
half-plane and so cannot be reduced to the local changes in structure). So, the effect 
of the changed fragment on the rest of the structure (which is regarded as the elastic 
continuum) in the fust order of magnitude is reduced to the action of an equilibrium 
pair of forces (dipole component). The action of the force pair leads in the 2~ case 
to a decrease in the rate R-' (for the displacement field) [IS]. 

Also, in the 3D case the structure, analogous to that in figure 2, may be described 
as a disclination loop of the minimal size possible [3] and such a system is also an 
SDWP [3]. According to [4], the strain field of the disclination line in a glass decreases 
as E-' owing to the effect of screening. So the displacement field of a loop decreases 
as E-'. Similarly, in the 2D case we may also assume that the field of the defect 
introduced decreases as R-'. Here we suppose that the concentration of defects 
considered is sufficiently small that it is possible to disregard the quadrupole and 
highererder components, which, of course, implies the other decreasing rates. 

Now it is possible to calculate the elastic field of the defect. 
The equilibrium equations in polar components are written 

From Hooke's law, 
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where X and p are the Lam6 constants; the expressions for the components of strain 
tensor are 
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= au,/ar ed = (l/r)(au,/ats) 

Y,.+ = au,/ar - u g / T  + (1/r)(au7/a5) 
(W 

with U = (U,, U,) being the vector of the displacement, and assuming that 

'CL = ( l /r)V(5) .  (24 
Thus we Snally obtain 

The symmetry conditions for (r ,  8) may be obtained if one recalls that the defect 
introduced is anisotropic Choosing for direction 1-2 the condition 5 = 0, we have 

V,(t9) = Vv(-5). (2.8) 

Solving the system (27)-(2.8), we obtain 

(2.9) 

Equation (29) becomes invalid at distances r < a", where no is the core size of 
the defect, which is of the order of the interatomic distance. We may estimate the 
discontinuities of the displacement field in the direction 21 = 0, 

[U,] N IA(1+ c)I''* 

[U,] N -IA(1 - c)1'I2. 

A / a i ~ O . l / ( I + c ) .  (2.1oc) 

(2 1w 
and in the direction 5 = n/2, 

Glob) 

From (22) we have [U]  2 0.3a0. So, for A, we have the estimate 

Now it is possible to calculate the elastic energy of a single defect. For the strain 
tensor we have 

C, = - [A~s(25)] /?  

E+ = [A(l-  2s)cos(28)]/r2 

yr+ = [2A(s - l)sin(25)]/r2 

and for the stress tensor uij we obtain 

up = A[cX - 2cos(25)(sX + p)]/r2 

uff = Ac(X+2p)/r2 

T7a = ILYrff. 
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The energy density in polar components is expressed by the Clapeyron formula 

w = $(Ur€, t L7%9% t TvTgYrd). 

W = nAZ[cZ(X t 2p)  + 2@(1- s ) (2  - s)]/Zu: + E, 

(213) 

(214) 

Finally we have for the energy of the defect 

where the energy E, of the core may be roughly estimated as p A 2 / a i .  
The total energy of a glass with structural defects may be expressed as 

NJ = w, + w,, + w,t (215) 

where W, is the elastic energy of the field of external forces (in the absence of 
defects), Waer is the sum of the energies of defects (see (214)) and W ,  is the energy 
of interaction of elastic fields caused by defects and external forces. As will be shown 
below, the energy of a defect in the external field depends only on the parameters of 
the defect and the d u e  of stress caused by an external field at the point T = 0. That 
is why the problem of calculating W may be reduced to calculation of the elastic field 
at points corresponding to the cores of the present defects. 

Let us assume that the single defect with the elastic field (29) is affected by the 
external stress T ~ ~ .  We choose the directions of the axes of the Cartesian components 
with reference point at r = 0 as 

O X : 9 = 0  

OY : 9 = af2.  

In order to calculate the energy U of interaction we use the Betti-Green formula 
[lo]: 

Here W(U,ZI) is the density of energy of interaction: 

W(U,V) = iXijkFij(+kf(V) 

where U and v are the displacement vectors of the defect and the external field, 
respectively, 

t ( w )  = T;jcoS(u,+*)Z; TiJ = X I J k f E i J ( U )  

and U is the external normal vector to 85. 
We choose as EIS the circle of radius R with the centre at T = 0. R is small 

enough to obtain 

IRi~ad(r i j ) lK IT i j l  (219) 

U = ~ A [ c ( T , , +  T ~ ~ )  + f ( l +  s ) ( T , ~  - rYy)1/2. (220) 

and to regard T~~ as a constant at 85. After simple calculations we obtain 

It is possible to consider this expression as the work of the external stress at 
discontinuities of the displacement defined above. 
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3. The description of plastic phenomena 

The typical behaviour of material under deformation is presented in figure 3. OA 
corresponds to h e a r  elastic behaviour. The tension n(A) is referred to as the limit 
of proportionality and u(B) as the yielding limit of the material. BE corresponds to 
plastic Bow. 

BE is not observable in inorganic glasses under the usual conditions; fracture 
occurs earlier, during AB. Nevertheless, during experiments on indentation and 
microhardness, glasses have demonstrated plastic behaviour [I 11. 

All the characteristic features of the deformation diagram in figure 3 may be 
explained and predicted with the help of the theory of defects introduced in section 2 

First we consider OA which corresponds to linear elasticity. InitialIy each defect 
present in the glass possesses a direction which corresponds to the minimum energy in 
a local field and which is caused by other defects. When 0 < U < n(A), the external 
field is too small to orient the defects. The non-linear behaviour in AB occurs 
because there is a sufficiently high tension to orient the present defects according to 
the external field with a gain in energy. 

In order to estimate the limit of proportionality in the u-e diagram we consider 
the system in figure 4. 

Ib calculate the energy W,, of interaction we use equations (2.12) and (2.20) and 
finally obtain 

M'12 = -*A,A,(X + p){2~ ,0 ,  - s ( ~ - ~ s ) [ c ~ c o s ( ~ + ~ )  

+ .zms(2+,)1/2(1- s) - 2 4 1  + s)ms[2(+, + +2)l}/%. (3.1) 
Here Ai and ci are the parameters of the appropriate defects, +,, and are the 
angles between the directions of defects and the director 12, and R, is the distance 
between defects. 

This system may possess several states of equilibrium. They are described by the 
system of equations 

.3Wn/841 = [ 4 3  - 5s) sin(2+,)]/2( 1 - 8 )  + 4 4  1 t s) sin[2( = 0 

i3W12/.3+2 = [cls(3- 5s)sin(2+,)]/2(1- 8 )  + 4 s ( l +  s)sin[2(+, + +2)] = 0. 

It is possible to find some states of equilibrium which correspond to the minimum 
(states 1 and 2) and maximum (states 3 and 4) energies of interaction (figure 5). In 

+ 
( 3 4  
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the case of equivalent defects they are parallel in state 2 and the angle 9 is expressed 
bY 

c0~(2rp) = -c(5 - 3 ~ ) / 8 ( 1 -  s’) .  (3.3) 

In this case the energies of states 1 and 2 are equivalent It provides the disordered 
structure of the initial defect distribution. The barrier between different structures 
may be roughly estimated as the difference between the energies of states 1 and 4 

A W ~ ? r A 2 ( X + ~ ) [ 4 s ( l + s ) + c s ( 5 - 3 s ) / ( l - s ) ] / ~  0.4) 

for the case of equivalent defects. 

MAXIMA: MINIMA: 

Figure 5. 

The external elastic field becomes sufficient to orient the defect if energy is gained 
on orientation: 

A W  <o?rA[c+( l+s ) /2 ] /2  (3.5) 

where U is the external tension. 
For the limit of proportionality we have the estimate 

U* 2 . r A ( X + / ~ ) [ & ( l + s ) + 2 ~ ~ ( 5 - 3 ~ ) / ( 1  - s ) ] / [%(~+( l  + ~ ) / 2 ]  (3.6) 

where R, represents the average distance between defects. Using the data on the 
defect concentration [15] we may obtain the estimate 

u * / ~  5 x 10-3 (3.7) 

for the model of a 2~ glass. Here E is Young’s modulus: 

E = (A  + Zp)/(l- v’) 

where. v is Poisson’s ratio. 
Point B corresponds to the load u(B), which gives rise to appearance of new 

defects and to the growth of deformation under the constant tension, i.e. to plastic 
Bow. 
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Now let us consider the a s e  when the glass is affected by external tension 
(T== = U; T~~ = 0; the fields of other defects present are neglected). The defect 
appears when energy is gained 

E., < A ,  (3.8) 

where E., is the energy of the defect which appears and A,, is the work of the elastic 
field. Using for E., equation (214) and for A, equation (2.20), we finally obtain 

U =  A [ ~ ( X f 2 ~ ) + 2 ~ ( 1 - - s ) ( 2 - s ) l / [ a ~ ( c + ( l + s ) / 2 ) 1 .  (3.9) 

In order to obtain the yielding limit we should find the minimum of the function 
u(c) .  We obtain 

cmt= [ (1+s)2/4+2s(l -s)(2-s)] '~2-(1+s)/2 (3.10) 

and for the yielding limit 

rmtn = 2A( X + Zp)c&Ju$ (3.1 1) 

The next imponant question is that of the most suitable arrangement of the 
defects which appear. All of them are oriented corresponding to the extemal field. 
Now it is necessary to take into account the energy of interaction. We have established 
above that for the system of two parallel and equivalent defects the minimum energy 
of interaction corresponds to state 2 in figure 5. The critical angle 4" is now expressed 
as (= (3.5)) 

cos(wu) = -c(5 - 3s)/8(1- 5') (3.12) 

where c = c&$(s) (see (3.3)). 
So, we may conclude that defects which appear in a ZD glass are aligned along 

the tines having an angle c $ ~  to the direction of external force. These lines m a y  be 
associated with the shear hands which do occur in materials when they are plastically 
deformed. 

Moreover, if we consider the physical Poisson's ratio range 

0 < U < 1 (for two dimensions!) (3.14) 

we obtain for c & ~  (U = 1 - 2s) 

0 4 c&t 4 0.42. (3.15) 

So we obtain that, under unidirectional tension, defects appear which have a 
negative discontinuity of displacement in the direction normal to that of tension 
(see (2.1Oa) and (ZlOb)). This leads us to the well known result that during plastic 
deformation a 'neck' in the specimen may appear. 

Certainly, the results presented here are to be considered as a rough 
approximation. For simplicity we did not take into account here the energy of the 
core of the defect, the statistics of the system of defects, etc. Obviously all these 
cannot affect the qualitative results presented here. 
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4. Discussion 

First we can compare the result for the yielding limit with the experimental data. 
From (3.4) we obtain 

( 4 4  
umi,/E = 2Ac,,,/(l - uZ)au. 2 

The estimate for U = 0.4 and for Ala: = O.l/(l + c) (see (2.lOC)) gives 

umio/E Y 0.07. (4.2) 

Experiments give u~,/E-values of the order of 0.01-0.08 for ~ r i o u s  glasses [ll]. 
Another 'control test' for our results is a comparison with the calculations in 161. 

In this work the stressing is bidirectional; the 'specimen' (computer model) b loaded 
in two perpendicular directions. The formula for e&, is somewhat changed: 

cLt= [ ( l + s ) y / 4 + 2 s ( I - s ) ( 2 - s ) ] ' / Z - ( l + n ) X / 2  (4.3) 

where x is the yielding limit for the ratio (al - u2)/ (u,  + uz) (ul and u2 are the 
tensions in perpendicular directions). For x the following value was obtained 

x Y 0.64. (4.4) 

In order to estimate the angle between the shear bands and direction 1 of loading 
we use equations (3.6), (4.4) and (4.5) and for v = 0.3-0.5 we obtain 

q5,, Y 4P-56'. 

From the numerical experiment, 

q5,, cz 52-55' 

to the direction of the large axis. 
Unfortunately the data presented in [6] do not give us an opportunity to estimate 

Poisson's ratio more accurately. Nevertheless the theory developed gives quite a 
reliable prediction. 

Also, when considering the reduced system of equilibrium equations (2.7) without 
any additional symmetry condition such as (2.8), only one basic solution appears in 
addition to (2.9): 

which coincides with the vortex-like structure discovered in [I41 by numerical 
simulation of plastic deformation in a ZD glass. 
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